The alpha-helical domain near the amino terminus is essential for dimerization of vascular endothelial growth factor

J Biol Chem. 1998 May 1;273(18):11115-20. doi: 10.1074/jbc.273.18.11115.

Abstract

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations such as tumor angiogenesis, diabetic retinopathy, or psoriasis. By amino-terminal deletion analysis and by site-directed mutagenesis we have identified a new domain within the amino-terminal alpha-helix that is essential for dimerization of VEGF. VEGF121 variants containing amino acids 8 to 121 or 14 to 121, respectively, either expressed in Escherichia coli and refolded in vitro, or expressed in Chinese hamster ovary cells, were in a dimeric conformation and showed full binding activity to VEGF receptors and stimulation of endothelial cell proliferation as compared with wild-type VEGF. In contrast, a VEGF121 variant covering amino acids 18 to 121, as well as a variant in which the hydrophobic amino acids Val14, Val15, Phe17, and Met18 within the amphipathic alpha-helix near the amino terminus were replaced by serine, failed to form biological active VEGF dimers. From these data we conclude that a domain between amino acids His12 and Asp19 within the amino-terminal alpha-helix is essential for formation of VEGF dimers, and we propose hydrophobic interactions between VEGF monomers to stabilize or favor dimerization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • CHO Cells
  • Cricetinae
  • Dimerization
  • Endothelial Growth Factors / chemistry
  • Endothelial Growth Factors / genetics
  • Endothelial Growth Factors / metabolism*
  • Escherichia coli / genetics
  • Lymphokines / chemistry
  • Lymphokines / genetics
  • Lymphokines / metabolism*
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • Lymphokines
  • Recombinant Proteins
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors