Protein kinase C-mediated inhibition of transmembrane signalling through CCK(A) and CCK(B) receptors

Br J Pharmacol. 1998 Mar;123(6):1189-97. doi: 10.1038/sj.bjp.0701713.

Abstract

1. The rat CCK(A) and CCK(B) receptors were stably expressed in Chinese hamster ovary (CHO-09) cells in order to compare modes of signal transduction and effects of protein kinase C (PKC) thereupon. 2. Spectrofluorophotometry of Fura-2-loaded cells revealed that both receptors retained their pharmacological characteristics following expression in CHO cells. Sulphated cholecystokinin-(26-33)-peptide amide (CCK-8-S) increased the cytosolic Ca2+ concentration ([Ca2+]i) in CCK(A) cells, measured as an increase in Fura-2 fluorescence emission ratio, 1000 fold more potently than its non-sulphated form (CCK-8-NS) (EC50 values of 0.19 nM and 0.18 microM, respectively). By contrast, CCK-8-S and CCK-8-NS were equally potent in CCK(B) cells (EC50 values of 0.86 nM and 1.18 nM, respectively). The CCK(A) receptor agonist JMV-180 increased [Ca2+]i only in CCK(A) cells. Likewise, pentagastrin increased [Ca2+]i only in CCK(B) cells. Finally, CCK-8-S-induced Ca2+ signalling through the CCK(A) receptor was most potently inhibited by the CCK(A) receptor antagonist L364,718, whereas the CCK(B) receptor antagonist L365,260 was more potent in CCK(B) cells. 3. Receptor-mediated activation of adenylyl cyclase was measured in the presence of the inhibitor of cyclic nucleotide phosphodiesterase activity, 3-isobutyl-1-methylxanthine. CCK-8-S and, to a lesser extent, CCK-8-NS, but not JMV-180 or pentagastrin, stimulated the accumulation of cyclicAMP in CCK(A) cells. By contrast, none of these agonists increased cyclicAMP in CCK(B) cells. 4. Short-term (3 min) pretreatment with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) evoked a rightward shift of the dose-response curve for the Ca2+ mobilizing effect of CCK-8-S in both cell lines. In addition, short-term TPA pretreatment markedly reduced CCK-8-S-induced cyclicAMP accumulation in CCK(A) cells. In both cases, the inhibitory effect of TPA was abolished by the PKC inhibitors, GF-109203X and staurosporine, whereas no inhibition was observed with the inactive phorbol ester, 4-alpha-phorbol 12-myristate 13-acetate. 5. During prolonged TPA treatment, the cells gradually recovered from phorbol ester inhibition and in the case of CCK-8-S-induced Ca2+ mobilization complete recovery was achieved after 24 h of TPA treatment. Western blot analysis revealed that this recovery was paralleled by down-regulation of PKC-alpha, suggesting the involvement of this PKC isotype in the inhibitory action of TPA. 6. This study demonstrates that following expression in CHO cells (i) both CCK(A) and CCK(B) receptors are coupled to Ca2+ mobilization, (ii) only CCK(A) receptors are coupled to cyclicAMP formation and (iii) with both receptors signalling is inhibited by PKC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Calcium / metabolism
  • Cricetinae
  • Cyclic AMP / biosynthesis
  • Down-Regulation
  • Protein Kinase C / metabolism*
  • Rats
  • Receptor, Cholecystokinin A
  • Receptor, Cholecystokinin B
  • Receptors, Cholecystokinin / metabolism
  • Receptors, Cholecystokinin / physiology*
  • Recombinant Proteins / metabolism
  • Signal Transduction*
  • Sincalide / metabolism
  • Spectrometry, Fluorescence
  • Tetradecanoylphorbol Acetate / pharmacology
  • Tritium

Substances

  • Receptor, Cholecystokinin A
  • Receptor, Cholecystokinin B
  • Receptors, Cholecystokinin
  • Recombinant Proteins
  • Tritium
  • Cyclic AMP
  • Protein Kinase C
  • Sincalide
  • Tetradecanoylphorbol Acetate
  • Calcium