beta-chemokines play an important role in the development of immunologic reactions. Macrophages are major beta-chemokine-producing cells during T-cell directed, delayed-type hypersensitivity reactions in tissues, and have been reported to be important producers of beta-chemokines in the lymph nodes of HIV-1-infected individuals. However, the physiological signals responsible for inducing macrophages to produce beta-chemokines have not been established. Two soluble T cell products, interferon-gamma and granulocyte-macrophage colony stimulating factor, were added to cultured macrophages, but failed to stimulate the production of macrophage inflammatory protein-1alpha and -1beta; regulated upon activation, normal T cell expressed and secreted (RANTES); or monocyte chemoattractant protein-1. Instead, direct cell-cell contact between macrophages and cells engineered to express CD40L (also known as CD154) resulted in the production of large amounts of macrophage inflammatory protein-1alpha and -1beta, and RANTES (all ligands for CCR5), and monocyte chemoattractant protein-1 (a ligand for CCR2). Supernatants from CD40L-stimulated macrophages protected CD4(+) T cells from infection by a nonsyncytium-inducing strain of HIV-1 (which uses CCR5 as a coreceptor). These results have implications for granulomatous diseases, and conditions such as atherosclerosis and multiple sclerosis, where CD40L-bearing cells have been found in the macrophage-rich lesions where beta-chemokines are being produced. Overall, these findings define a pathway linking the specific recognition of antigen by T cells to the production of beta-chemokines by macrophages. This pathway may play a role in anti-HIV-1 immunity and the development of immunologic reactions or lesions.