Human vascular adhesion protein-1 (VAP-1) is a sialylated endothelial cell adhesion molecule mediating the initial L-selectin-independent interactions between lymphocytes and endothelial cells in man. In this work we cloned and characterized mouse VAP-1 (mVAP-1) and produced an anti-mVAP-1 mAb against a recombinant mVAP-1 fusion protein. The isolated cDNA encodes a novel 84.5-kDa mouse molecule. The anti-mVAP-1 mAb stained high endothelial venules in peripheral lymph nodes, and smooth muscle cells and lamina propria vessels in gut. During immunoblotting, this anti-mVAP-1 mAb recognized a 110/220-kDa Ag, suggesting that mVAP-1 is a dimer. Since mVAP-1 has significant sequence identity to members of a family of enzymes called the copper-containing amine oxidases, we showed that mVAP-1 possesses monoamine oxidase activity. Thus, mVAP-1 is the first mouse membrane-bound amine oxidase identified at the molecular level. Based on the 83% identity between the isolated cDNA and human VAP-1 cDNA, the expression pattern, the molecular mass, and the enzyme activity against monoamines, the cloned molecule represents a mouse homologue of human VAP-1. Cloning of mVAP-1 provides a valuable tool for in vivo studies of the significance of VAP-1 for lymphocyte-endothelial cell interactions and of the possible relationship between leukocyte adhesion and amine oxidase activity.