Background: Bupivacaine may have toxic cardiovascular effects when accidentally administered by intravascular injection. However, its electrophysiologic effects in the presence of myocardial ischemia remain unknown. The authors evaluated the electrophysiologic and anti- and proarrhythmic effects of bupivacaine in an in vitro model of the ischemic and reperfused myocardium.
Methods: In a double-chamber bath, a guinea pig right ventricular muscle strip was subjected partly to normal conditions and partly to simulated ischemia followed by reperfusion. The electrophysiologic effects of bupivacaine were studied at 1, 5, and 10 microM concentrations.
Results: Bupivacaine (5 and 10 microM) decreased the maximal upstroke velocity of the action potential (Vmax) in normoxic conditions and further decreased (10 microM) the Vmax decrease induced by ischemic conditions. Bupivacaine reduced the mean occurrence time to the onset of myocardial conduction blocks (9 +/- 3 min; mean +/- SD; P < 0.005 with 5 and 10 microM, compared with 17 +/- 6 min during simulated ischemia with no drug or control), and it increased the number of preparations that became inexcitable to pacing (55% of preparations, with 1 microM and 100% with 5 and 10 microM, compared with 17% for the control group). The incidence of spontaneous arrhythmias was reduced by 5 and 10 microM bupivacaine during ischemia and reperfusion and was enhanced by 1 microM bupivacaine during the ischemic phase.
Conclusions: In guinea pig myocardium under ischemic conditions, bupivacaine induced a loss of excitability at concentrations of 5 and 10 microM. Proarrhythmic effects observed at 1 microM were considered as lower than the cardiotoxic range in normoxic conditions. The incidence of reperfusion arrhythmias was decreased at all concentrations.