Exposure of endothelial monolayers to hydrogen peroxide results in increased solute permeability in a time- and dose-dependent fashion. This effect is prevented by either staurosporine, an inhibitor of PKC, or by Gö6976, an inhibitor of "classical" PKC isoforms. Immunohistochemistry of peroxide-treated monolayers illustrates a loss of cadherin staining at cell junctions and gap formation predominantly at tri-cellular junctions. Both staurosporine and Gö6976 prevented peroxide-induced gap formation. Peroxide also stimulated internalization of cadherins as measured by the trypsin protection assay, which was not blocked by staurosporine or Gö6976. These data suggest that peroxide causes: 1) a time- and dose-dependent increase in permeability and dose-dependent increase in gap formation, both of which are PKC dependent; and 2) promotes PKC-independent cadherin internalization. These data indicate that cadherin internalization may be part of the mechanism through which oxidants regulate solute permeability.