Increased sensitivity to intracellular Ca2+ concentration ([Ca2+]) is an important mechanism for agonist-induced contraction of airway smooth muscle, but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization with acetylcholine (ACh) and endothelin (ET)-1 in porcine tracheal smooth muscle by measuring contractions at a constant [Ca2+] in strips permeabilized with alpha-toxin or beta-escin. The peptide inhibitor G protein antagonist 2A (GP Ant-2A), which has selectivity for Gq over Gi, inhibited contractile responses to ET-1, ACh, and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), but the proportional inhibition of ACh responses was less than that of ET-1. Pretreatment with pertussis toxin reduced ACh contractions but had no effect on those of ET-1 or GTPgammaS. Clostridium botulinum C3 exoenzyme, which inactivates Rho family monomeric G proteins, caused similar reductions in contractile responses to ACh, ET-1, and GTPgammaS. Farnesyltransferase inhibition, which inhibits Ras G proteins, reduced responses to ET-1. We conclude that the heterotrimeric G proteins Gq and Gi both contribute to Ca2+ sensitization by ACh, whereas ET-1 responses involve Gq but not Gi. Both Gq and Gi pathways likely involve Rho family small G proteins. A Ras-mediated pathway also contributes to Ca2+ sensitization by ET-1 in airway smooth muscle.