The human immunodeficiency virus type 1 (HIV-1) Tat protein strongly and specifically stimulates transcription elongation from the HIV-1 LTR and provides an important in vitro model system to study this process. Here we use protein-affinity chromatography to identify cellular factors involved in transcription elongation. A Tat-affinity column bound one transcription factor, Tat-SF1, efficiently and selectively. Tat-SF1 was identified originally as a Tat-specific coactivator, but we show it is a general transcription elongation factor. Our results also reveal the existence of an ATP-inactivatable general elongation factor (AIEF) required for Tat-SF1 activity and for which Tat can substitute functionally.