DNA vaccines have been shown to be an effective means of inducing cytotoxic T-lymphocyte (CTL) responses in both young and aged mice. Better understanding of the pathways by which antigens encoded by DNA vaccines are processed and presented to CTL may allow for improvements in CTL responses in older animals. Since CTL recognize short peptides presented by MHC class I molecules, and since ubiquitin-dependent proteolysis is widely believed to be responsible for degradation of endogenously synthesized antigens and generation of these peptide ligands, we sought to use ubiquitin (Ub) conjugation to target influenza virus nucleoprotein (NP) antigen into the Ub-proteasome degradation pathway for MHC class I-restricted antigen processing and presentation. However, the addition of the Ub moiety did not affect the half-life of Ub-NP protein in transiently transfected human rhabdomyosarcoma (RD) cells. Moreover, the modifications of NP DNA vaccine with Ub conjugation did not affect their ability to induce a CTL response specific for the H-2Kd-restricted NP147-155 epitope, as assessed by both percent cytolysis in bulk CTL culture and by CTL precursor (CTLp) frequency in limiting dilution analysis (LDA). In contrast, the anti-NP antibody (Ab) responses were dramatically reduced in mice immunized with low doses (1 microgram) of Ub-NP constructs, compared with mice immunized with wild-type NP DNA. These results demonstrate that Ub conjugation alone does not guarantee targeting of endogenously synthesized antigens for rapid degradation by proteasomes. Furthermore, the ability of ubiquintination to reduce Ab responses to NP without affecting CTL responses suggests that the Ub modifications result in a lower availability of full-length NP from transfected cells in vivo. The implications of these data on antigen presentation and cross-priming are discussed.