A number of murine cataract mutations have been localized to chromosome 1 close to the gamma-crystallin gene cluster (Cryg) (Everett et al., 1994, Genomics 20: 429-434; Löster et al., 1994, Genomics 23: 240-242). Based on the size of the mapping or allelism tests they have not been shown to be genetically distinct and have been assigned to locus symbol Cat2. Here we assign three mutations to the respective gamma-crystallin gene. Using a systematic candidate gene approach to analyze the entire Cryg cluster, an A-->G transition was found in exon 2 of Cryga for the ENU-436 mutation and is designated Cryga1Neu. The mutant allele Crygbnop (formerly Cat2(nop)) is caused by a replacement of 11 bp by 4 bp in the third exon of Crygb, while a C-->G transversion in exon 3 of Cryge has been found for the Cryget (formerly Cat2(t)) mutation. For the mutation Cryga1Neu, an Asp-->Gly exchange is deduced, whereas the mutations Crygbnop and Cryget lead to the formation of in-frame stop codons and give rise to truncated proteins of 144 and 143 amino acids, respectively. The effects of the mutations upon gamma-crystallin structure are likely to be quite different. The Cryga1Neu mutation is expected to affect the link between Greek-key motifs 2 and 3, whereas both Crygbnop and Cryget mutations are supposed to truncate the fourth Greek-key motif. All three mutations are predicted to alter protein folding of the gamma-crystallins and result in lens cataract, but the phenotype for each is quite distinctive.
Copyright 1998 Academic Press.