A girl with a 46,X,t(X;21) (q13.3;p11.1) karyotype presented with skin redundancy, especially in the neck, prominent occiput and micrognathia, and later developed hypotonia, hypopigmentation, sparse scalp hair, and profound mental retardation characteristic of Menkes disease. Her serum copper (14 microg/dl) and ceruloplasmin (9 mg/dl) levels were extremely low. Fluorescent in situ hybridization analysis with a 100-kb P1-derived artificial chromosome probe containing the Menkes disease gene demonstrated three twin-signals, one on the normal X chromosome and one each on derivative chromosomes X and 21, indicating that the Xq13.3 breakpoint was located within the gene. Replication pattern analysis showed that the normal X chromosome was late replicating, whereas the derivative X chromosome was selectively early replicating. These results indicated that Menkes disease in our patient resulted from a de novo translocation that disrupts the disease gene.