Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues

Biochem J. 1998 Nov 1;335 ( Pt 3)(Pt 3):513-9. doi: 10.1042/bj3350513.

Abstract

The mitochondrial outer membrane enzyme carnitine palmitoyltransferase I (CPT I) plays a major role in the regulation of fatty acid entry into the mitochondrial matrix for beta-oxidation by virtue of its inhibition by malonyl-CoA. Two isoforms of CPT I, the liver type (L) and muscle type (M), have been identified, the latter being 100 times more sensitive to malonyl-CoA and having a much higher Km for the substrate carnitine. Here we have examined the roles of different regions of the CPT I molecules in their response to malonyl-CoA, etomoxir (an irreversible inhibitor) and carnitine. To this end, we analysed the properties of engineered rat CPT I constructs in which (a) the N-terminal domain of L-CPT I was deleted, (b) the N-terminal domains of L- and M-CPT I were switched, or (c) each of three conserved histidine residues located towards the N-terminus in L-CPT I was mutated. Several novel points emerged: (1) whereas the N-terminal domain is critical for a normal malonyl-CoA response, it does not itself account for the widely disparate sensitivities of the liver and muscle enzymes to the inhibitor; (2) His-5 and/or His-140 probably play a direct role in the malonyl-CoA response, but His-133 does not; (3) the truncated, chimaeric and point- mutant variants of the enzyme all bound the covalent, active-site- directed ligand, etomoxir; and (4) only the most radical alteration of L-CPT I, i.e. deletion of the N-terminal 82 residues, affected the response to carnitine. We conclude that the N-terminal domain of CPT I plays an essential, but permissive, role in the inhibition of the enzyme by malonyl-CoA. By contrast, the larger C-terminal region dictates the degree of sensitivity to malonyl-CoA, as well as the response to carnitine; it is also sufficient for etomoxir binding. Additionally, further weight is added to the notion that one or more histidine residues may be involved in the CPT I-malonyl-CoA interaction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • COS Cells
  • Carnitine O-Palmitoyltransferase / biosynthesis
  • Carnitine O-Palmitoyltransferase / chemistry
  • Carnitine O-Palmitoyltransferase / metabolism*
  • Conserved Sequence
  • Epoxy Compounds / metabolism
  • Histidine*
  • Isoenzymes / biosynthesis
  • Isoenzymes / chemistry
  • Isoenzymes / metabolism
  • Kinetics
  • Malonyl Coenzyme A / pharmacology*
  • Mutagenesis, Site-Directed
  • Peptide Fragments / metabolism
  • Point Mutation
  • Rats
  • Recombinant Fusion Proteins / biosynthesis
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / metabolism
  • Transfection

Substances

  • Epoxy Compounds
  • Isoenzymes
  • Peptide Fragments
  • Recombinant Fusion Proteins
  • Histidine
  • Malonyl Coenzyme A
  • Carnitine O-Palmitoyltransferase
  • etomoxir