Objectives: The purpose of the present study was to examine the expression of the endothelial-type nitric oxide synthase (NOS III) and the inducible-type NOS (NOS II) in human myocardium and their regulation in heart failure from patients with different etiologies.
Background: In heart failure, plasma levels of nitrates were found to be elevated. However, data on myocardial NOS expression in heart failure are conflicting.
Methods: Using RNase protection analysis and Western blotting, the expression of NOS III and NOS II was investigated in ventricular myocardium from nonfailing (NF) hearts (n=5) and from failing hearts of patients with idiopathic dilated cardiomyopathy (dCMP, n=14), ischemic cardiomyopathy (iCMP, n=9) or postmyocarditis cardiomyopathy (mCMP, n=7). Furthermore, immunohistochemical studies were performed to localize NOS III and NOS II within the ventricular myocardium.
Results: In failing human hearts, NOS III mRNA levels were increased to 180% in dCMP, 200% in iCMP and to 210% in mCMP as compared to NF hearts. Similarly, in Western blots (using constitutively expressed beta-tubulin as a reference) NOS III protein expression was increased about twofold in failing compared to NF hearts. Immunohistochemical studies with a selective antibody to NOS III showed no obvious differences in the staining of the endothelium of cardiac blood vessels from NF and failing human hearts. However, NOS III-immunoreactivity in cardiomyocytes was significantly more intense in failing compared to NF hearts. Low expression of NOS II mRNA was detected in only 2 of 30 failing human hearts and was not found in NF hearts. Inducible-type NOS protein was undetectable in either group.
Conclusions: We conclude that the increased NOS III expression in the ventricular myocardium of failing human hearts may contribute to the contractile dysfunction observed in heart failure and/or may play a role in morphologic alterations such as hypertrophy and apoptosis of cardiomyocytes.