Melanocortinergic neurons are believed to play a role in the control of food intake. Melanocortin receptor agonists and antagonists modulate feeding in several mouse models of chemically and genetically induced hyperphagia. To date, little information is available describing the role of this neurological system in the control of the natural feeding cycle in genetically intact rats. To evaluate the involvement of melanocortins in spontaneous nocturnal feeding, the synthetic melanocortin receptor agonist, MTII and the antagonist, SHU9119 were administered ICV (third ventricle) alone and in combination. Dose-dependent inhibition or stimulation of food intake was observed with MTII or SHU9119, respectively. Co-injections containing equal concentrations of MTII and SHU9119 resulted in food intake that was indistinguishable from controls. Food intake patterns observed in studies in which various dose combinations of MTII and SHU9119 were co-injected are consistent with the concept that both affect feeding by acting on similar melanocortin receptors. The hypothesis that effects of melanocortins on feeding may be mediated via an NPY related pathway was tested by co-injecting MTII and NPY in a 2-h satiated food intake paradigm. MTII inhibited food intake induced by 5.0 microg hNPY in a dose dependent manner with the highest dose tested abolishing the NPY feeding response. The studies suggest that melanocortins act via specific receptors to control food intake in rats, possibly via an NPY related pathway. If similar neurochemical processes operate in humans, selectively modulating specific melanocortin receptor signaling may be an approach to the treatment of human obesity.