Degrading the retinal image by frosted eye occluders produces elongated eyes and 'deprivation myopia' in a variety of animal models. The postulated retinal 'deprivation detector' is quite sensitive to even small changes in image contrast or spatial frequency composition. Because psychophysical experiments have shown that a decline in luminance shifts the contrast sensitivity function to lower spatial frequencies, it is likely that only a reduced spatial frequency range is available for image analysis to control eye growth. It is even possible that the compression might be sufficient to promote deprivation myopia. We have tested this hypothesis, using the animal model of the chicken. (1) At an ambient illumination of 550 lux (about 76 cd m-2), neutral density (ND) filters placed in front of the eye with 0.0, 0.5 or 1.0 log unit attenuation did not change refractive development. However, monocularly or binocularly attached filters with 2 log units attenuation produced 5-7 D of myopia relative to normal eyes. Black occluders were not more effective. Frosted eye occluders with little effect on image brightness (about 0.5 log units attenuation) produced much more myopia (about 16 D compared with the controls). (2) The effects of the ND filters on refractive development could not be reproduced if the ambient illumination was reduced by 2 log units. Probably, minor effects on image quality were introduced by optical imperfections of the ND filters which were more critical at low retinal image brightness. (3) In an optomotor experiment (spatial frequency 0.2 cyc deg-1, stripe speed 57 deg sec-1), it was shown that the chickens' contrast sensitivity was severely reduced when the eyes were covered by 2.0 ND filters. (4) Since there is evidence that changes in dopamine release from the retina may be one of the factors affecting the development of myopia, we have tested how selective these changes were for spatial information. It was found that dopamine release was controlled by both spatial and luminance information and that the inputs of both could be scarcely separated. (5) Because the experiments show that the eye becomes more sensitive to image degradation at low light, the human eye may also be more prone to develop myopia if the light levels are low during extended periods of near work.
Copyright 1999 Academic Press.