Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

7 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy.
Musacchio N, Zilich R, Masi D, Baccetti F, Nreu B, Bruno Giorda C, Guaita G, Morviducci L, Muselli M, Ozzello A, Pisani F, Ponzani P, Rossi A, Santin P, Verda D, Di Cianni G, Candido R. Musacchio N, et al. Among authors: zilich r. Int J Med Inform. 2024 Oct;190:105550. doi: 10.1016/j.ijmedinf.2024.105550. Epub 2024 Jul 15. Int J Med Inform. 2024. PMID: 39059083 Free article.
Achieving Good Metabolic Control Without Weight Gain with the Systematic Use of GLP-1-RAs and SGLT-2 Inhibitors in Type 2 Diabetes: A Machine-learning Projection Using Data from Clinical Practice.
Giorda CB, Rossi A, Baccetti F, Zilich R, Romeo F, Besmir N, Di Cianni G, Guaita G, Morviducci L, Muselli M, Ozzello A, Pisani F, Ponzani P, Santin P, Verda D, Musacchio N. Giorda CB, et al. Among authors: zilich r. Clin Ther. 2023 Aug;45(8):754-761. doi: 10.1016/j.clinthera.2023.06.006. Epub 2023 Jul 12. Clin Ther. 2023. PMID: 37451913 Free article.
Uncovering Predictors of Lipid Goal Attainment in Type 2 Diabetes Outpatients Using Logic Learning Machine: Insights from the AMD Annals and AMD Artificial Intelligence Study Group.
Masi D, Zilich R, Candido R, Giancaterini A, Guaita G, Muselli M, Ponzani P, Santin P, Verda D, Musacchio N; Associazione Medici Diabetologi (AMD) Annals Study Group and AMD Artificial Intelligence Study Group. Masi D, et al. Among authors: zilich r. J Clin Med. 2023 Jun 16;12(12):4095. doi: 10.3390/jcm12124095. J Clin Med. 2023. PMID: 37373787 Free PMC article.
Application of a Machine Learning Technology in the Definition of Metabolically Healthy and Unhealthy Status: A Retrospective Study of 2567 Subjects Suffering from Obesity with or without Metabolic Syndrome.
Masi D, Risi R, Biagi F, Vasquez Barahona D, Watanabe M, Zilich R, Gabrielli G, Santin P, Mariani S, Lubrano C, Gnessi L. Masi D, et al. Among authors: zilich r. Nutrients. 2022 Jan 15;14(2):373. doi: 10.3390/nu14020373. Nutrients. 2022. PMID: 35057554 Free PMC article.
Determinants of good metabolic control without weight gain in type 2 diabetes management: a machine learning analysis.
Giorda CB, Pisani F, De Micheli A, Ponzani P, Russo G, Guaita G, Zilich R, Musacchio N; Associazione Medici Diabetologi (AMD) Annals Study Group. Giorda CB, et al. Among authors: zilich r. BMJ Open Diabetes Res Care. 2020 Sep;8(1):e001362. doi: 10.1136/bmjdrc-2020-001362. BMJ Open Diabetes Res Care. 2020. PMID: 32928790 Free PMC article.