Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

8 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysis.
Kalra A, Bachina P, Shou BL, Hwang J, Barshay M, Kulkarni S, Sears I, Eickhoff C, Bermudez CA, Brodie D, Ventetuolo CE, Kim BS, Whitman GJR, Abbasi A, Cho SM; Collaborators. Kalra A, et al. Among authors: barshay m. JTCVS Open. 2024 Jun 8;20:64-88. doi: 10.1016/j.xjon.2024.06.001. eCollection 2024 Aug. JTCVS Open. 2024. PMID: 39296456 Free PMC article.
Utilizing Machine Learning to Predict Neurological Injury in Venovenous Extracorporeal Membrane Oxygenation Patients: An Extracorporeal Life Support Organization Registry Analysis.
Kalra A, Bachina P, Shou BL, Hwang J, Barshay M, Kulkarni S, Sears I, Eickhoff C, Bermudez CA, Brodie D, Ventetuolo CE, Whitman GJR, Abbasi A, Cho SM. Kalra A, et al. Among authors: barshay m. Res Sq [Preprint]. 2023 Dec 22:rs.3.rs-3779429. doi: 10.21203/rs.3.rs-3779429/v1. Res Sq. 2023. PMID: 38196631 Free PMC article. Preprint.
Predicting Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation Patients with Tree-Based Machine Learning: Analysis of the Extracorporeal Life Support Organization Registry.
Kalra A, Bachina P, Shou BL, Hwang J, Barshay M, Kulkarni S, Sears I, Eickhoff C, Bermudez CA, Brodie D, Ventetuolo CE, Kim BS, Whitman GJR, Abbasi A, Cho SM. Kalra A, et al. Among authors: barshay m. Res Sq [Preprint]. 2024 Jan 11:rs.3.rs-3848514. doi: 10.21203/rs.3.rs-3848514/v1. Res Sq. 2024. Update in: JTCVS Open. 2024 Jun 08;20:64-88. doi: 10.1016/j.xjon.2024.06.001 PMID: 38260374 Free PMC article. Updated. Preprint.
Using machine learning to predict neurologic injury in venovenous extracorporeal membrane oxygenation recipients: An ELSO Registry analysis.
Kalra A, Bachina P, Shou BL, Hwang J, Barshay M, Kulkarni S, Sears I, Eickhoff C, Bermudez CA, Brodie D, Ventetuolo CE, Whitman GJR, Abbasi A, Cho SM; HERALD Group. Kalra A, et al. Among authors: barshay m. JTCVS Open. 2024 Jul 2;21:140-167. doi: 10.1016/j.xjon.2024.06.013. eCollection 2024 Oct. JTCVS Open. 2024. PMID: 39534333 Free PMC article.
Chronic peritoneal dialysis for the management of chronic renal failure.
Blumenkrantz MJ, Shapiro DJ, Miller JH, Barshay M, Kopple JD, Shinaberger JH, Friedler RM, Coburn JW. Blumenkrantz MJ, et al. Among authors: barshay m. Proc Clin Dial Transplant Forum. 1973;3:117-21. Proc Clin Dial Transplant Forum. 1973. PMID: 4806627 No abstract available.