Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum

Gait Posture. 2012 Jan;35(1):96-100. doi: 10.1016/j.gaitpost.2011.08.014. Epub 2011 Sep 22.

Abstract

Gait impairment is a prominent falls risk factor and a prevalent feature among older adults with cognitive impairment. However, there is a lack of comparative studies on gait performance and fall risk covering the continuum from normal cognition through mild cognitive impairment (MCI) to Alzheimer's disease (AD). We evaluated gait performance and the response to dual-task challenges in older adults with AD, MCI and normal cognition without a history of falls. We hypothesized that, in older people without history of falls, gait performance will deteriorate across the cognitive spectrum with changes being more evident under dual-tasking. Gait was assessed using an electronic walkway under single and three dual-tasks conditions. Gait velocity and stride time variability were not significantly different between the three groups under the single-task condition. By contrast, significant differences of decreasing velocity (p<0.0001), increasing stride time (p=0.0057) and increasing stride time variability (p=0.0037) were found under dual-task testing for people with MCI and AD. Less automatic and more complex dual-task tests, such as naming animals and serial subtraction by sevens from 100, created the greatest deterioration of gait performance. Gait changes under dual-tasking for the MCI and AD groups were statistically different from the cognitively normal controls. Dual-task assessment exposed gait impairments not obvious under a single-task test condition and may facilitate falls risk identification in cognitively impaired persons without a history of falls.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Accidental Falls
  • Aged
  • Alzheimer Disease / physiopathology*
  • Alzheimer Disease / psychology
  • Cognitive Dysfunction / physiopathology*
  • Cognitive Dysfunction / psychology
  • Gait / physiology*
  • Humans
  • Psychomotor Performance*