Gene therapy has been adapted for improving malignant tumor treatment. However, pharmacotherapies targeting cancer remain limited and are generally inapplicable for rare disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment for many disorders. Here, the congruent pharmacological activities of OA and CRISPR-dCas9 in targeting AURKA or KDM1A and improving disease-specific prognosis and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs are utilized. In particular, the OA-triggered CRISPR-dCas9 transcriptional repression system rapidly and simultaneously attenuated lung and thyroid cancer. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficiencies of single therapeutics.
Keywords: CRISPR‐dCas9; cancer therapy; oleanolic acid; transcription regulation.
© 2024 Wiley‐VCH GmbH.