The Colorado potato beetle, Leptinotarsa decemlineata Say, is a potato pest that can cause important economic losses to the potato industry worldwide. Diverse strategies have been deployed to target this insect such as biological control, crop rotation, and a variety of insecticides. Regarding the latter, this pest has demonstrated impressive abilities to develop resistance against the compounds used to regulate its spread. Substantial work has been conducted to better characterize the molecular signatures underlying this resistance, with the overarching objective of leveraging this information for the development of novel approaches, including RNAi-based techniques, to limit the damage associated with this insect. This review first describes the various strategies utilized to control L. decemlineata and highlights different examples of reported cases of resistances against insecticides for this insect. The molecular leads identified as potential players modulating insecticide resistance as well as the growing interest towards the use of RNAi aimed at these leads as part of novel means to control the impact of L. decemlineata are described subsequently. Finally, select advantages and limitations of RNAi are addressed to better assess the potential of this technology in the broader context of insecticide resistance for pest management.
Keywords: ABC transporters; Colorado potato beetle; RNA interference; cytochrome P450s; glutathione S-transferases; insecticide resistance; potato pest.