Contact dermatitis (CD), including allergic and irritant CD, are common dermatological diseases and are characterized by an erythematous rash and severe itch. In this study, we investigated the function of TRPC3, a canonical transient receptor potential channel highly expressed in type 1 nonpeptidergic (NP1) nociceptive primary afferents and other cell types, in a mouse CD model. Although TrpC3 null mice had little deficits in acute somatosensation, they showed significantly increased scratching with CD. In addition, TrpC3 null mice displayed no differences in mechanical and thermal hypersensitivity in an inflammatory pain model, suggesting that this channel preferentially functions to antagonize CD-induced itch. Using dorsal root ganglia and panimmune-specific TrpC3 conditional knockout mice, we determined that TrpC3 in dorsal root ganglia neurons but not in immune cells is required for this phenotype. Furthermore, the number of MRGPRD+ NP1 afferents in CD-affected dorsal root ganglia is significantly reduced in TrpC3-mutant mice. Taken together, our results suggest that TrpC3 plays a critical role in NP1 afferents to cope with CD-induced excitotoxicity and that the degeneration of NP1 fibers may lead to an increased itch of CD. Our study identified a role of TrpC3 and NP1 afferents in CD pathology.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.