Spinophilin stabilizes cell surface expression of alpha 2B-adrenergic receptors

J Biol Chem. 2003 Aug 22;278(34):32405-12. doi: 10.1074/jbc.M304195200. Epub 2003 May 8.

Abstract

The third intracellular (3i) loops of the alpha 2A- and alpha 2B-adrenergic receptor (AR) subtypes are critical for retention of these receptors at the basolateral surface of polarized Madin-Darby canine kidney (MDCKII) cells at steady state. The third intracellular loops of the alpha 2A, alpha 2B, and alpha 2C-AR subtypes interact with spinophilin, a multidomain protein that, like the three alpha 2-AR subtypes, is enriched at the basolateral surface of MDCKII cells. The present studies provide evidence that alpha 2-AR interaction with spinophilin contributes to cell surface stabilization of the receptor. We exploited the unique targeting profile of the alpha 2B-AR subtype in MDCKII cells: random delivery to apical and basolateral surfaces with rapid (t(1/2) < or = 60 min) apical versus slower (t(1/2) = 10-12 h) basolateral turnover. Apical delivery of a spinophilin subdomain containing the alpha 2-AR-interacting region (Sp151-483) by fusion with apically targeted p75NTR extended the half-life of alpha 2B-AR at the apical surface to approximately 3.6 h and eliminated the rapid phase (0-60 min) of alpha 2B-AR turnover on that surface. Furthermore, we examined alpha 2B-AR turnover at the surface of mouse embryo fibroblasts derived from wild type (Sp+/+) or spinophilin knock-out (Sp-/-) mice. Two independent experimental approaches demonstrated that agonist-evoked internalization of HA-alpha 2B-AR was accelerated in mouse embryo fibroblasts derived from Sp-/- mice. These findings are consistent with the interpretation that endogenous spinophilin contributes to the stabilization of alpha 2B-AR and presumably all three alpha2-AR subtypes at the surface of target cells and may act as a scaffold that could link alpha 2-ARs to proteins interacting with spinophilin via other domains.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenergic alpha-Agonists / pharmacology
  • Animals
  • Cell Line
  • Cell Membrane / metabolism
  • Dogs
  • Female
  • Fluorescent Antibody Technique
  • Mice
  • Mice, Knockout
  • Microfilament Proteins / physiology*
  • Nerve Tissue Proteins / physiology*
  • Pregnancy
  • Receptors, Adrenergic, alpha-2 / metabolism*

Substances

  • Adrenergic alpha-Agonists
  • Microfilament Proteins
  • Nerve Tissue Proteins
  • Receptors, Adrenergic, alpha-2
  • neurabin