The majority of patients with B-cell non-Hodgkin lymphoma (NHL) can be cured with standard chemoimmunotherapy. However, patients who fail first line therapy have dismal outcomes, particularly if they have disease that is resistant to salvage therapy, including chemoimmunotherapy, radiation and/or autologous stem cell transplantation. Indolent B-NHLs, such as follicular lymphoma (FL), although not generally considered curable may be treated over many years with good prognosis. However, a subset of B-NHLs can undergo histologic transformation into more aggressive subtypes with outcomes similar to aggressive B-NHLs. In recent years, T cells genetically modified with chimeric antigen receptors (CARs), have demonstrated a remarkable capacity to induce complete and durable clinical responses in patients with chemotherapy-refractory lymphomas. Indeed, two autologous CD19-directed CAR-modified T cell products have now been FDA-approved for the treatment of patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma (PMBCL) and transformed FL, while a plethora of other CAR-T cell targets are being explored in ongoing clinical trials. The purpose of this review is to summarize the clinical efficacy and unique toxicities of individually developed CAR-T cell products for the treatment of lymphomas, and their evolution from the laboratory bench to commercialization.
Keywords: CAR-T cell; cancer; chimeric antigen receptor; immunotherapy; lymphoma; oncology.