Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy

Nanoscale Res Lett. 2019 Jun 4;14(1):193. doi: 10.1186/s11671-019-2985-z.

Abstract

Small interfering RNA (siRNA)-based gene therapy has provided an alternative strategy for cancer therapy. One of the key components within gene therapy process is the delivery system. As a novel non-viral gene vector, DMP, prepared by modifying mPEG-PCL micelle with cationic DOTAP lipid, has been prepared and successfully applied in plasmid DNA-based colon cancer gene therapy study. However, its potential in siRNA delivery is unknown. In this study, the preparation process of DMP was optimized and the anti-cancer efficacies of the DMP/siMcl1 and DMP/siBcl-xl complexes were studied on a mouse colon cancer model. Our results demonstrated that DMP cationic micelle-delivered siRNAs could effectively inhibit the growth of C26 colon cancer cells in vitro. Meanwhile, intratumoral administration of DMP/siMcl1 and DMP/siBcl-xl complexes obviously suppressed subcutaneous tumor model in vivo. These results suggest the DMP/siRNA complex to be a potential candidate for cancer gene therapy.

Keywords: C26 colon cancer; Gene delivery; Gene therapy; Non-viral vector; RNAi; siRNA.