Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through transcriptomics and functional heterologous expression

Appl Microbiol Biotechnol. 2019 May;103(9):3727-3736. doi: 10.1007/s00253-019-09720-3. Epub 2019 Mar 26.

Abstract

Shea tree (Vitellaria paradoxa) is one economically important plant species that mainly distributes in West Africa. Shea butter extracted from shea fruit kernels can be used as valuable products in the food and cosmetic industries. The most valuable composition in shea butter was one kind of triacylglycerol (TAG), 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). However, shea butter production is limited and little is known about the genetic information of shea tree. In this study, we tried to reveal genetic information of shea tree and identified shea TAG biosynthetic genes for future shea butter production in yeast cell factories. First, we measured lipid content, lipid composition, and TAG composition of seven shea fruits at different ripe stages. Then, we performed transcriptome analysis on two shea fruits containing obviously different levels of SOS and revealed a list of TAG biosynthetic genes potentially involved in TAG biosynthesis. In total, 4 glycerol-3-phosphate acyltransferase (GPAT) genes, 8 lysophospholipid acyltransferase (LPAT) genes, and 11 diacylglycerol acyltransferase (DGAT) genes in TAG biosynthetic pathway were predicted from the assembled transcriptome and 14 of them were cloned from shea fruit cDNA. Furthermore, the heterologous expression of these 14 potential GPAT, LPAT, and DGAT genes in Saccharomyces cerevisiae changed yeast fatty acid and lipid profiles, suggesting that they functioned in S. cerevisiae. Moreover, two shea DGAT genes, VpDGAT1 and VpDGAT7, were identified as functional DGATs in shea tree, showing they might be useful for shea butter (SOS) production in yeast cell factories.

Keywords: Shea butter; Shea transcriptomic; Synthetic biology; TAG biosynthetic pathway; Yeast cell factories.

MeSH terms

  • Biosynthetic Pathways
  • Diacylglycerol O-Acyltransferase / genetics
  • Diacylglycerol O-Acyltransferase / metabolism
  • Fruit / genetics
  • Fruit / metabolism
  • Metabolic Engineering
  • Plant Proteins / genetics*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism*
  • Sapotaceae / enzymology
  • Sapotaceae / genetics*
  • Sapotaceae / metabolism
  • Transcriptome
  • Triglycerides / biosynthesis*
  • Yeasts / genetics*
  • Yeasts / metabolism*

Substances

  • Plant Proteins
  • Triglycerides
  • Diacylglycerol O-Acyltransferase