Muscle-invasive urothelial carcinomas of the bladder (MIUCB) exhibit frequent receptor tyrosine kinase alterations, but the precise nature of their contributions to tumor pathophysiology is unclear. Using mutant HRAS (HRAS*) as an oncogenic prototype, we obtained evidence in transgenic mice that RTK/RAS pathway activation in urothelial cells causes hyperplasia that neither progresses to frank carcinoma nor regresses to normal urothelium through a period of one year. This persistent hyperplastic state appeared to result from an equilibrium between promitogenic factors and compensatory tumor barriers in the p19-MDM2-p53-p21 axis and a prolonged G2 arrest. Conditional inactivation of p53 in urothelial cells of transgenic mice expressing HRAS* resulted in carcinoma in situ and basal-subtype MIUCB with focal squamous differentiation resembling the human counterpart. The transcriptome of microdissected MIUCB was enriched in genes that drive epithelial-to-mesenchymal transition, the upregulation of which is associated with urothelial cells expressing multiple progenitor/stem cell markers. Taken together, our results provide evidence for RTK/RAS pathway activation and p53 deficiency as a combinatorial theranostic biomarker that may inform the progression and treatment of urothelial carcinoma.
©2015 American Association for Cancer Research.