Neonatal estradiol and early adversity interact to modify basolateral amygdala morphology and adult behavior in female rats

J Neuroendocrinol. 2024 Dec 18:e13483. doi: 10.1111/jne.13483. Online ahead of print.

Abstract

Being raised under adverse conditions during infancy and childhood represents a significant risk factor for developing later psychopathologies and dysfunctions in emotional, affective, and cognitive abilities. Depending on the type, timing, and duration of early adversity, different consequences emerge across the sexes in both human and animal models, although our understanding of the underlying interactions between sex and early life stress (ELS) is still incomplete. In this study, we used the limited bedding (LB) paradigm, a well-described model of ELS in rat pups during the first 10 days of life, and tested whether masculinization of the female brain by neonatal injections of estradiol benzoate (EB) would recapitulate the ELS-induced vulnerability phenotype of males on morphology of the basolateral amygdala (BLA) principal neurons and pre-adolescent and adult behavior. Our results show that LB-induced morphological changes in BLA neurons of weaning female rats were eliminated by EB treatment independently of early changes in estrogen receptor (ERα) expression in this region. EB treatment synergized with LB to enhance play behavior of pre-adolescent females to levels far greater than those observed in control males. In adult offspring, LB reduced time spent in the center in males and EB tended to increase social contact time compared to normal females, but only in LB conditions. Our findings indicate that neonatal masculinization of the female brain modifies specific, but not all aspects of BLA morphology and both pre-adolescent and adult behavior that are altered by ELS.

Keywords: adult behavior; basolateral amygdala morphology; estrogen receptor; limited bedding; neonatal estradiol.