(1) Background: Hypertension is a complex, multifactorial disease that is caused by genetic and environmental factors. Apart from genetic predisposition, the mechanisms involved in this disease have yet to be fully understood. We previously reported that LEENE (lncRNA enhancing endothelial nitric oxide expression, transcribed from LINC00520 in the human genome) regulates endothelial cell (EC) function by promoting the expression of endothelial nitric oxide synthase (eNOS) and vascular growth factor receptor 2 (VEGFR2). Mice with genetic deletion of the LEENE/LINC00520 homologous region exhibited impaired angiogenesis and tissue regeneration in a diabetic hindlimb ischemia model. However, the role of LEENE in blood pressure regulation is unknown. (2) Methods: We subjected mice with genetic ablation of leene and wild-type littermates to Angiotensin II (AngII) and monitored their blood pressure and examined their hearts and kidneys. We used RNA-sequencing to identify potential leene-regulated molecular pathways in ECs that contributed to the observed phenotype. We further performed in vitro experiments with murine and human ECs and ex vivo experiments with murine aortic rings to validate the select mechanism. (3) Results: We identified an exacerbated hypertensive phenotype of leene-KO mice in the AngII model, evidenced by higher systolic and diastolic blood pressure. At the organ level, we observed aggravated hypertrophy and fibrosis in the heart and kidney. Moreover, the overexpression of human LEENE RNA, in part, restored the signaling pathways impaired by leene deletion in murine ECs. Additionally, Axitinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR suppresses LEENE in human ECs. (4) Conclusions: Our study suggests LEENE as a potential regulator in blood pressure control, possibly through its function in ECs.
Keywords: ECs; LEENE; LncRNA; hypertension.